
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 9, SEPTEMBER 1993

A Hybrid Yee Algorithm/Scalar-Wave

Equation Approach
Paul H. Aoyagi, Jin-Fa Lee, and Raj Mittra

1593

Abstract-In this paper, two alternate formulations of the

Yee algorithm, namely, the finite-difference time-domain (FDTD)
vector-wave algorithm and the FDTD scalar-wave algorithm
are examined and compared to determine their relative merits

and computational efficiency. By using the central-difference
divergence relation the conventional Yee algorithm is rewrit-

ten as a hybrid Yee/FDTD scalar-wave algorithm. It is found

that this can reduce the computation time for many 3-D open

geometries, in particular planar structures, by approximately
two times as well as reduce the computer-memory require-

ments by approximately one-third. Moreover, it is demonstrated

both mathematically and verified by numerical simulation of a
coplanar strip transmission line that this hybrid algorithm is

entirely equivalent to the Yee algorithm. In addition, an alternate
but mathematically equivalent reformulation of the Enquist-
Majda absorbing boundary condition based on the normal field
component (relative to the absorbing boundary wall) is given to
increase the efficiency of the hybrid algorithm in the modeling of

open region problems. Numerical results generated by the hybrid

Yee/scalar-wave algorithm for the Vivaldi antenna are given and

compared with published experimental work.

I. INTRODUCTION

I N the past few years the Yee algorithm [1] has been

demonstrated to be a viable technique for solving a variety

of problems in electromagnetic [2] – [4]. Though there are

other FDTD formulations that can potentially be used to solve

Maxwell’s equations, i.e., those based on the vector- and

scalar-wave equations, there has been very little published

work investigating these formulations and their relative merits.

The purpose of this work is to study the FDTD scalar-wave

and vector-wave algcwithms and to compare each with the

more conventional Yee algorithm to determine their respec-

tive computational efficiency. The major objectives of this

work are: (i) to demonstrate the mathematical and numerical

equivalence between the Yee algorithm and a FDTD vector-

wave equation, (ii) to demonstrate the mathematical and

numerical equivalence of the FDTD scalar-wave algorithm

with the Yee algorithm for the time-domain modeling of 3-D

divergence-free electromagnetic fields, (iii) to demonstrate that

a hybrid Yee/scalar-wave FDTD algorithm can be combined

with absorbing boundary conditions (ABC) to generate results

numerically identical to the conventional Yee algorithm for

coplanar microwave integrated circuits but at half the compu-

tation and one-third the computer memory, and (iv) to compare
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the numerical results generated by the hybrid Yee/scalar-wave

algorithm for the Vivaldi antenna with published experimental

work.

II. DIFFERENT TYPES OF FDTD FORMULATIONS

A. The Yee Algorithm

The Yee algorithm is a central difference approximation of

Maxwell’s curl equations written in explicit form. The relative

locations of the electric- and magnetic-field components in a

uniform, Cartesian grid is defined by the so-called Yee lattice

(Fig. 1). Typical examples of an electric- and magnetic-field
finite-difference equations for lossless media (excluding the

source term) are given by
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l% 1. The Yee lattice depicting the relative spatial positions of the elec-

tri; and magnetic fields co~respo~ding to a central-differencing of the Yee
algorithm as well as the FDTD vector-wave and scalar-wave algorithms.

where (m, n, p) are position indices defined such that x =

mAx, y = nAy, z = PAZ

As = Ax = Ay = Az (uniform space discretization)

1 = time index such that t = lAt

At = time discretization

E = electric permitivitty

p = magnetic permeability.

An important characteristic of these equations is that they are

coupled, i.e., one cannot compute any single field component

without having to compute other field components. Conse-

quently, six field components per cell must be stored and a

minimum of 24 additions and 6 multiplications per cell must

be performed in order to advance one time step, At, where a

“cell” is defined to be a unit volume ASXASXAS.

B, The Vector-Wave Equation

By considering the six algebraic equations of the Yee

algorithm it is apparent that there is a redundancy built into

its formulation. In particular, by considering all six difference

equations it is possible to substitute all of the magnetic-

field expressions in (1) solely in terms of electric fields and

obtain (3), which is shown at the bottom of the page where
~2_2. c /[&~(m + l/2>njp)w-(m + l/2, n,p)], and cT, u~
are relative permitivity and permeability, respectively. By

performing similar manipulations on the 17Y and Ez equations

the necessary number of difference equations per cell can be

reduced from 6 to 3. It can be readily shown that the resulting

equations are exactly equivalent to the central difference

approximation of the vector-wave equation written in explicit

form, i.e.

vxvxE+-g E=o. (4)

Because the FDTD vector-wave equation can be derived di-

rectly from the Yee algorithm through algebraic manipulation

(analogous to performing continuous vector operations on

Maxwell’s curl equations) the results generated by both differ-

ence schemes will be numerically identical. However, despite

having eliminated the explicit computation of the magnetic

fields, (3) shows that the FDTD vector-wave formulation will

actually increase rather than decrease the minimum number

of additions required per iteration from 24 to 39 per cell.

Moreover, because values at the time index 1 and 1 – 1 must

be stored, the memory requirements are actually no better than

those of the Yee algorithm and at the cost of losing field

information. It can be concluded that a fully explicit FDTD

vector-wave formulation can provide little if any practical

advantage over the conventional Yee algorithm.

C. The Scalar-Wave Equation

The Yee algorithm and the FDTD vector-wave algorithm,

however, can be simplified further, provided the fields are as-

sumed or known to be locally divergence-free. Mathematically,

-Z+l(m++,%p)=~-4(v(m+~;np)A’)2]

“E’(m++-E’-l(m++>np)
( )

2
v(m+~, n,p)At

+
As

I

E~(m+~, n+l, p)+ E~(m+~, n–l, p) +E~(m+~, n,p+l)

+E~(m+~, n,p–l)– E~(m+l, n+~, p) +E~(m+l, n–~, p+l)

} (3).,



AOYAGIet al.: HYBRID YEEALGORITHMISCALAR-WAVE EQUATION APPROACH 1595

this is equivalent to assuming that the fields satisfy the central-

difference approximation of the divergence relation. Assuming

that Ax = Ay = Az, this relation can be expressed in terms

of the Yee lattice as

E~(m+~,n,p)-Ek(m-~,n,p)

‘E(mn++-E(m+’)
‘E’(m)np+2-E’(mn4=0‘4)

By substituting (5) into (3) expressicm (6), which is shQwn at

the bottom of the page, can be obtained.

By considering (6) as well as the analogous expressions

for the EY and Ez fields, it can be shown that the resulting

difference equaticms are identical to the central-difference

approximation of the wave equation written in explicit form,

i.e.

v2E+J&E=o. (6)

In contrast to the FDTD vector-wave equation given by (3),

(6) shows that a FDTD scalar-wave-equation formulation can

result in a modest computational savings over the Yee algo-

rithm. In particular, it can be seen that the FDTD scalar-wave

algorithm will require 21 additions and six multiplications per

cell, per iteration to generate the total electric-field transient

response as opposed to 24 addition and six multiplications

per cell, per iteration required by the Yee algorithm. If free

space is being modeled, the computational requirements of

the FDTD scalar-wave algorithm actually decrease slightly

more to just 18 additions and three multiplications per cell,

per iteration provided the time step is set equal to the Courant,

Friedrichs, Lewy (CFL) stability limit. The greatest economy,

however, of using a FDTD scalar-wave formulation will result

from the flexibility of the formulation. In particular, unlike

the Yee algorithm and the FDTD vector-wave formulation,

the FDTD scalar-wave formulation consists of six uncoupled

algebraic equations which, in turn, implies that any single

field component can be computed without necessarily having

to pay the overhead of computing other field components.

Consequently, the number of computations can be decreased

further by omitting all but the most essential or desired field

components from the formulation. Moreover, because it, can

be shown that an initial-value problem based on Maxwell’s

source-free curl equations and the scalar-wave equations will

preserve the divergence-free nature of the fields at time is

advanced (see Appendixes I and II), the FDTD scalar-wave

algorithm can be expected to generate numerical results iden-

tical to those of the Yee algorithm, provided the fields and

their initial condition are known to be divergence-free.

III. HYBRID FDTD FORMULATIONS

A. Combining the Scalar-Wave Equation with the

Vector- Wave Equation

Though there can be significant computational advantage, it

is important to emphasize the fact that the FDTD scalar-wave

algorithm will be valid if and only if the fields are known

to be divergence-free for all time, and this imposes a limit

on its usage and generality that would normally not apply

to the Yee algorithm of the FDTD vector-wave algorithm.

Consequently, one must be careful to determine whether the

scalar-wave equation is applicable in a given situation. One

simply way, however, to extend the applicability of the FDTD

scalar-wave formulation is to combine it with the FDTD

vector-wave algorithm. By applying the FDTD vector-wave

algorithm locally to the nondivergence free regions of the

problem domain such as pec edges, dielectric interfaces, and/or

sources, and applying the more economical FDTD scalar-wave

algorithm to the remaining divergence-free regions,. i.e., those

regions that have no discontinuities, the two algorithms can

be combined to generate the time-domain response of any

isotropic, inhomogeneous scattering problem.

To demonstrate the feasibility of this hybrid formulation,

we consider modeling the time-domain response of a time-

harmonic electric-field source radiating inside a 75As x

75As x 75As isotropic, homogeneous peclair cavity using a

uniform, cubic mesh. For computational efficiency the time

step was set equal to the well-known CFL stability limit.

The source was chosen to be a single E. field with a time-

harmonic dependence located near the center of the cavity. The

problem domain was partitioned into two regions (Fig. 1). In

region 1 a FDTD (electric field) vector-wave algorithm was

applied to model the nondivergence-free fields around the

source. Region 2 consisted of the remaining divergence-free

volume where a FDTD (electric field) scalar-wave algorithm

was used. The resulting electric-field distributions were then

compared with those of the conventional Yee algorithm. It was

found that the hybrid algorithm ran approximately 1.37 times

faster than the conventional Yee algorithm (730 compared

to 1000 CPU seconds) for comparably vectorized computer

programs on the Cray-YMP. Moreover, it was found that

both algorithms generated numerical results identical to within

(1#+1 m+~, n,pz )=(2 -6(~)2)E~(m+~,n,p) -Ek-l(m+~,.,p)

2 E~(m+~, n+l, p)+ E~(m+~, n–l, p) +E~(m+~, n,p+l)

( ){

vAt
+—

As
}

(5)

+E~(m+~, n,p–l)– E~(m+~, n,p) +E~(m–~, n,p)
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nine decimal places over the entire problem domain even

after 10000 iterations, demonstrating not only equivalence but

stability of the algorithm.

B. Combining the Scalar-Wave Equation with the Yee

Algorithm

Having verified the numerical equivalence between the

FDTD scalar-wave/vector-wave hybrid formulations with the

conventional Yee algorithm, we note that the computational

efficiency could have been increased even further by par-

titioning the problem domain so that the divergence-free

regions can be interfaced with the nondivergence free regions

without having to use all three electric- (or all magnetic-)

field components to interface region 1 with region 2. Though

more elaborate partitioning schemes are possible, a simple

and easily vectorizable scheme that can be used to reduce

the number of field components is to partition the problem

into planar volumes, which makes the present hybrid approach

very attractive in modeling planar andlor coplanar microwave

integrated circuits. Since the interface between each region

is 2-D in nature, only the tangential electric (or tangential

magnetic) field on that interface are needed to model the fields

in each divergence-free region. Consequently, only two out of

the three electric (or magnetic) FDTD scalar-wave equations

in a Cartesian system are needed to model the divergence-

free regions, reducing the memory requirements of the FDTD

scalar-wave algorithm from six fields per cell to four fields

per cell and, more significantly, the number of computations

per iteration from 24 additions, six multiplications to just 14

additions, four multiplications per cell assuming a uniform

cubic mesh is used. For the special case of modeling free

space, the number of additions needed to implement the FDTD

scalar-wave formulation can be reduced even further to just

12 additions, two multiplications by choosing the time step to

be near the stability limit. Table I summarized and compares

all of the computational and memory requirements of the Yee

algorithm, the FDTD vector-wave and scalar-wave algorithms.

To demonstrate the economy of using the hybrid YeeJscalar-

wave formulation with planar partitioning as well as its

equivalence to the standard Yee algorithm, a coplanar strip

(CPS) transmission line inside a 75As x 75As x 75As pec

cavity partitioned into three planar volumes was simulated

using a time-harmonic electric-field source (Fig. 2). Region 2

was chosen to be a planar volume approximately two cells
thick encompass the CPS line on thin dielectric substrate

(s. = 5.0). Regions 1 and 3 were chosen to consist of

the remaining divergence-free volumes. A FDTD scalar-wave

algorithm was applied to Ev, E, in regions 1 and 3 while

the conventional Yee algorithm was applied in region 2. Both

simulations were run at the maximum time step allowed for

by the CFL stability condition using a uniform, cubic mesh.

After 10000 iterations, it was found that the Ev and Ez field

distributions over the entire volume were identical to that

obtained using a full Yee algorithm up to 10 decimal places on

the Cray YMP. Moreover, the computation time of the hybrid

formulation was found to be approximately 1.54 times faster

than the Yee algorithm for comparably vectorized codes, i.e.,

/
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Fig. 2. Partitioning of a hybrid FDTD algorithm used to model the
time-domain response of a 25As x 25As x 25As uec cavitv usinx a uniform,.=
cubic grid. The FDTD (electric field) vector-wave was applied around a

time-harmonic electric-field source located near the center of the cavity, i.e.,
region 1, while the FDTD (electric field) scalar-wave algorithm was applied

to region 2.

TABLE 1

COMPARISONOFTHE MINIMUM COMPUTATIONPER ITERATIONAND MEMORY
COSTSOF THE VARIOUS 3-D FDTD TECHNIQUES THE “ INDICATESTHE

COSTS ASSOCIATEDWITH THE FREE-SPACE SIMULATIONS

OPERATEDAT THE CFL STABILITY LIMIT

I 1 1 I 1

\ metfrod add/ceU I multfJcelI memory/celi

Yee algorithm 24 6 6
1 , 1 I

FDTD vector-wave 36 6 I 6

FDTD scafar-wave
(3 field formulation)

21(18)* 6(3)* 6

I I I

FDTD scalar-wave 14(12)* 4(2)* 4
(2 field formulation)

648 seconds compared to 1000 seconds. We note that because

the Yee algorithm can be vectorized extremely efficiently when

pec walls are used, as opposed to an absorbing boundary wall,

the improvement in computer time falls somewhat short of the

theoretical limit of 2.14 implied by Table I.

C. Application of an Absorbing Boundary Condition

Unlike the previous examples, many transient electromag-

netic problems require the application of an absorbing bound-
ary condition (ABC). Typically, when using the Yee algorithm

in a Cartesian system, the ABC is applied directly to the

two field components tangential to the ABC wall. Indeed,

strictly speaking, many of the ABC’s are valid only when

applied in this manner. If a FDTD scalar-wave formulation is

used, however, this straightforward application of the ABC is

not always possible. If, as in the previous example, a FDTD

scalar-wave algorithm is applied using only the EY and Ez

components, there will be difficulties in applying an ABC

to an xy - and xz-plane because only one tangential field

component rather than two will be available for computation.

This leads to a very novel predicament. In particular, though

the ABC can be applied to the known tangential component
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independently of the unknown tangential component (in a

Cartesian system), there is sufficient information to compute

the normal, field components interior to the ABC wall without

theother tangential component. Onewayto remedy this is to

apply an MC in some fashion to the normal field component.

Though there are several possible ways to accomplish this, an

approach mathematically identical to the conventional finite-

difference application of the ABC is to apply the ABC to

the normal derivative of the normal field. To illustrate this

equivalence, consider the conventional application of the first-

order Engquist-Majda ABC to the tangential electric field

components relative to a yz plane located at x = mAx

[5], i.e.

E;+ (m”++”)=
( 1

)

vAt – As
E1 m–l,n+~~p ‘vAt+AsY

(
Ej+l m–l, n+~, p)-E@n++41

“+’(m>np+i)=
( )El m–l, n,p+~ +

vAt – As

vAt + As

“[ (

EZ+l ‘m– l,”, p+ ~
z )-E’(mn”++)l

(7)

(8)

By applying the ABC separately to adjacent field components

and superimposing the equations, it can be shown that

G~~l(m, n,p) = G~z(m – l,n, p)

+ ~~ ~ ~~ [G~~l(m - l,n,p) - G~z(m,n,p)]

(9)

where

‘:(mn~’=-i~(mn++”) +E~(m n-+”)

-E’(mn”++)+E’(mn:-+)( lO)

If the fields at the absorbing boundary are divergence-free, i.e.,

the fields satisfy (5], G~Z will be mathematically equivalent to

the central-difference approximation of the normal derivative

of the normal field, i.e.

G~Z(m, n,p) = GL(m, n,p) (11)

where

“(mnp)=E’(m++np) -E’(m-+np)
(12)

By computing G~ on the ABC wall the interior normal fields

can be computed at a future time step using the FDTD

vector-wave equation. Because of the mathematical equiva-

lence between the Yee algorithm and the FDTD vector-wave

equation, application of the first-order Engquist-Majda ABC

to the normal field information (in the form of G~) with the

FDTD vector-wave algorithm will be numerically equivalent

to the ABC applied to the tangential field components with

the Yee algorithm.

To verify the equivalence between the conventional ap-

plication of the ABC with the proposed reformulation, the

time-domain simulation of the coplanar strip transmission

line (see Fig. 3) was repeated using the first-order Engquist-

Majda ABC with the hybrid Yee/scalar-wave algorithm using a

time-harmonic electric-field source. The G~ ABC formulation

was applied with the FDTD scalar-wave algorithm in the

divergence-free regions whereas the conventional tangential

field ABC formulation was applied with the Yee algorithm

in the nondivergence-free regions. After 10000 iterations it

was found that the Ev and E. values generated by the hybrid

algorithm over the entire volume are identical up to nine

decimal places to those obtained using the full Yee algorithm

with the conventional application of the ABC. Moreover,

the computational savings of the hybrid algorithm was still

found to be almost 2.1 times faster than the Yee algorithm

(756 compared to 1593 CPU seconds) for comparably vector-

ized code.

Though we have considered the first-order Engquist-Majda

ABC, similar analysis can also be used to show that the

second-order Engquist-Majda ABC as well as the Liao ABC

(or any order) [6] can also be equivalently reformulated.

IV. COMPUTATION OF THE E-PLANE RADIATION

PATTERN OF THE VIVALDI ANTENNA USING

THE YEE/SCALAR-WAVE ALGORITHM

As a practical demonstration of the Yee/scalar-wave algo-

rithm, the far field E-plane free space radiation patterns of a

Vivaldi antenna with and without dielectric substrate (Fig. 4) is

computed and compared with published experimental results.

Numerical simulations were run using a transient (gaussian)

electric-dipole source located at the back of the antenna. The

far-field was then computed using the equivalence principle in

conjunction with the near- to far-field time-domain translation

algorithm outlined in [7] and [8]. These time-domain results

were then Fourier-transformed to obtain the frequency depen-

dence of the radiation patterns. For computational efficiency,

the far-field was computed using the smallest equivalence

surface required to enclose the antenna. Interestingly, we

note that in addition to computational efficiency, choosing the

smallest equivalence surface will also increase the accuracy

of the far-field computation by reducing the numerical-phase

error introduced into the equivalent sources by the application

of the finite-difference approximation.

We begin by comparing the numerical results generated by

the hybrid Yee/scalar-wave algorithm with the experimental

results for a Vivaldi without a dielectric substrate at a single

operating frequency, ~0. The finite-difference discretization

was chosen such that A. = 20 As, where AO = free-space

wavelength corresponding to jO and As = Ax = Ay z Az =

cell size. The geometry of the Vivaldi was modeled using a

stair-casing approximation and longitudinal (pee) symmetry

abut the geometry was used to reduce the problem domain by

one-half. Information regarding the specific dimensions of the
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Fig. 3. Partitioning of a hybrid FDTD algorithm used to model the
ti~e-domain respo&e of a ~oplanar strip (~PS) transmission line on a
thin dielectric substrate (El, = 1.00, ez, = 5.00, e3~ = 1.00) inside a

25As x 25As x 25As uniform, cubic grid. The Yee algorithm was applied to
a planar volume around the CPS line, i.e., region 2, while the FDTD (Ew, Ez )

scalar-wave algorithm was applied to regions 1 and 3.
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Fig. 4. The Vivaldi Antenna.

given in Table II. In an attempt to economically

reduce unwanted interactions with the antenna, the ABC

walls were placed approximately 0.5A0, 1.OAO,1.25A0, and

1.5A0 from the back, front, top/bottom, and side of the

Vivaldi, respectively. This resulted in a 50As x 147As x

157As problem domain divided into three planar regions:

a small nondivergence-free region surrounding the Vivaldi

(20As x 147As x 157As) and two remaining divergence-

free regions (both 24As x 147As x 157As). The conventional
Yee algorithm was used to compute the transient response of

the nondivergence-free region while a (Eg, Ez ) FDTD scalar-

wave algorithm was used to compute the transient response

of the divergence-free region (Fig. 5). Total computation time

of the hybrid algorithm was approximately 4 CPU minutes

for 1200 iterations on the Cray YMP. Fig. 6 compares the

results generated by the Yee/scalar-wave algorithm with the

experimental results published in [9]. The results are found to

be in good agreement.

We next consider modeling a Vivaldi with dielectric sub-

strate (&r = 2.22) using the same Yee/scalar wave formulation.

The new dimensions of the Vivaldi being modeled are given

2) Yee
algorirhn

pecsymmetrywall
(Y=o)

<-”-----------------------------”-- ‘--7 .1

; 1)FDTD scabs-wave
.dgorihm (EYEZ)

................................................................................... ~
,
~ 3) FDTD scatar-wave

,

algorithm(EY,EZ)

k

x

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-.
Y

/

Fig. 5. Partitioning of the hybrid Yee/scalar-wave algorithm used to model

the time-domain response of a Vivaldi antenna in free space. A pec *z-wall

(y = O) is along the longitudinal axis of the Vivaldi splitting the structure
in half. The Yee algorithm was applied to a thin planar volume around the

antenna, i.e., region 2, while the FDTD (13V, E,) scalar-wave algorithm was

applied to regions 1 and 3.

o 0,5233 1.047 1,57
angle(radian)

Fig. 6. Comparison of the hybrid Yee/scalar-wave algorithm results with
published experimental data [9] for a Vivaldi antenna with no dielectric
substrate.

TABLE II
PHYSICAL DIMENSIONS OFTHE VIVMDI WITHOUT DIELECTRIC SUBSTRATE

(er = 1.00) USED TO COMPARE HYBRID YEE/SCALAR-WAVE
ALGORITHM (As = AX = Ay = A,z) SIMULATIONS

WITH EXPERIMENT [9] (j$l = 10.0 GHz,
Ao = 30 mm z= 20 As)

geometric dimensfoms [9] finite.difference

characteristic app roximation

L 6.30?@ 126As

wmax/2 1.77ao 19AS

wd2 5.10?4) 103AS

Wmitt12 O.olact lAS

in Table III. In contrast to the previous case, it was found

that a finer discretization, i.e., ~. = 34As, was needed

to adequately model the dielectric thickness, the associated

decrease in wavelength as well as the more dramatic flaring

of the antenna. To accommodate this discretization and to

allow for an ABC wall placement reasonable far away from

the antenna, a problem domain 50As x 86As x 263As was
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o 0.5233 1,047 1.57
angle (radian)

Fig. 7. Comparison of the hybrid Yee/scalar-wave algorithm results with
published experimental data [10] for a Vkaldi antenna with dielectric substrate

(G. = 2.22).

TABLE 111

PHYSICAL DIMENSIONSOF THE VIVALDI WITH DIELECTRIC SUBSTRATE

(G = 2.22) USED mJ COMPAREHYBRID YEE/SCALAR-WAVE

ALGORITHM (As = Ax = Ay = Az) SIMULATIONS

WITH EXPERIMENT [10] (f. = 35.0 GHz,
AO = 8.5mm = 34As)

geometric dimensiom [10] finite-difference

characteristic approximation

d 0.05810 2As

L 0.677A0 232As

Wnr&2 0.315).0 53As

we12 0.3151J3(approx.) 53As

WrnirJ2 O.010~ (approx.) lAs

used in the numerical simulations. (We note, however, due to

memory limitations, the ABC walls are approximately 20?Z0

closer relative to wavelength than the previous case.) As

before, longitudinal symmetry was used to reduce memory and

computation by one-half. Fig. 7 compares the E-plane pattern

generated by the Yee/scalar wave algorithm with the measured

results published in [10]. The total computation time of the

hybrid algorithm was approximately 3.4 CPU minutes on the

Cray YMP for 1000 iterations. It can be seen that the two

results are in good agreement. It is believed that discrepancies

are due to ABC wall placement and the fact that a rectangular-

waveguide feed rather than a dipole feed was used in the

measurement.

V. COMMENTS ON THE EFFICIENCY OF THE

YEE/SCAL&-WAVE ALGORITHM

Although partitioning the problem into planar regions is

always possible, an important factor in determining how much

computation time and memory will be saved by a hybrid-

FDTD formulation is the relative volume of the divergence-

free region compared to that of the nondivergence-free region.

To minimize the computation and memory, the volume of the
nondivergence-free regions should be made as small as pos-

sible to maximize the use of the more economical scalar-wave

formulation. Suitable geometries include planar geometries in

which nondivergence-free regions are often localized to thin

planar volumes. In such cases, a hybrid Yee algorithm/scalar-

wave algorithm can be expected to result in a memory and

computational savings approximately equivalent to that of a

FDTD scalar-wave algorithm (based on two components) cwer

the entire domain.

Because a significant reduction in computation and memory

is created by omitting the computation of fields, a potential

drawback of using the proposed hybrid scheme is the in-

evitable loss of electric- or magnetic-field information. This

drawback is somewhat offset by the fact that total field

information, e.g., to compute the electric or magnetic current,

is often required at or around the nondivergence-free regions

such as pee, pmc, or dielectric surfaces where the Yee algor-

ithm must be applied anyway as part of the hybrid scheme.

However, if information about all six field components is

needed in the divergence-free regions, e.g., to compute the

power crossing a plane, the Yee algorithm can be applied

locally where needed with minimal computational Overheiid.

VI. CONCLUSIONS

A hybrid Yee algorithm/scalar-wave equation formulation

that is mathematically and numerically equivalent to the con-

ventional Yee algorithm has been proposed. Limitations on

its application as well as the applicability of the absorbing

boundary conditions were also discussed. It is found that this

hybrid approach is a viable way to reduce the memory by 33%

and the computation by approximately 5070 over the standlard

Yee algorithm. In addition, a method of applying the absorbing

boundary condition on the normal fields (relative to an ABC

wall) using the divergence relation in conjunction with the

vector-wave equation is investigated and found to yield results

numerically identical with the conventional application of the

ABC based on the tangential fields. Numerical results gener-

ated by the hybrid Yee/scalar-wave algorithm for the Vivaldi

antenna are given and compared with published experimen-

tal work.

APPENDIX A

We wish to show that a solution to the initial value problem

of the wave equation, i.e.

v’2E(F, t) – g E(T,t) = o

where c = constant, will preserve the divergence relation,

V.l?(P, t)= Ofort>tO if V. Z’(F, t=tO) =0.

Proofi Taking the divergence of the wave equation, we

obtain

(Al)

where #(F, t) = V . ~(~, t).

If the fields are divergence-free at some arbitrary point in

time, to,i.e.,

V..qr, t=tr))=o (A.2)

it can be concluded by inspection that the solution to (A. 1)

is given by

q$(F,t)= V. Z’(F, t)=O fort >to.
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Note: A similar proof involving the finite-difference approxi-

mation of the wave equation can be done using the finite-

difference analog of the continuous-vector operations.

APPENDIX B

We want to prove that the Maxwell’s curl equations (source-

free) given by

aH(r, t)
vxE(F, t)=–fl at

tJE(r, t)
vx17(i=, t)=& at

will preserve the divergence-free nature of

magnetic field for t > to.

the electric and

Prooj2 Taking the divergence of both equations, one

obtains the following equations

(B.1)

(B.2)

where ~h(F, t) = V . ~(~, t)and ~.(~, t)= V . ~(P, t).

If the fields are divergence-free at an arbitrary point in time,

to,i.e.

4i(r, t=tll)= v”17(T, t=to)=o (B.3)

#e(T, t=to)=v .E(r, t=to)=o (B.4)

it can be concluded by inspection that the solution to (B.2)

and (B.4) implies that

V.17(T, t)= V. E(P, t)=O fort >to.

Note: A similar proof for the Yee algorithm can be done using

the finite-difference analog of the vector operations.
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