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A Hybrid Yee Algorithm/Scalar-Wave
Equation Approach

Paul H. Aoyagi, Jin-Fa Lee, and Raj Mittra

Abstract—In this paper, two alternate formulations of the
Yee algorithm, namely, the finite-difference time-domain (FDTD)
vector-wave algorithm and the FDTD scalar-wave algorithm
are examined and compared to determine their relative merits
and computational efficiency. By using the central-difference
divergence relation the conventional Yee algorithm is rewrit-
ten as a hybrid Yee/FDTD scalar-wave algorithm. It is found
that this can reduce the computation time for many 3-D open
geometries, in particular planar structures, by approximately
two times as well as reduce the computer-memory require-
ments by approximately one-third. Moreover, it is demonstrated
both mathematically and verified by numerical simulation of a
coplanar strip transmission line that this hybrid algorithm is
entirely equivalent to the Yee algorithm. In addition, an alternate
but mathematically equivalent reformulation of the Enquist-
Majda absorbing boundary condition based on the normal field
component (relative to the absorbing boundary wall) is given to
increase the efficiency of the hybrid algorithm in the modeling of
open region problems. Numerical results generated by the hybrid
Yee/scalar-wave algorithm for the Vivaldi antenna are given and
compared with published experimental work.

I. INTRODUCTION

N the past few years the Yee algorithm [1] has been
demonstrated to be a viable technique for solving a variety
of problems in electromagnetics [2]—[4]. Though there are
other FDTD formulations that can potentially be used to solve
Maxwell’s equations, i.e., those based on the vector- and
scalar-wave equations, there has been very little published
work investigating these formulations and their relative merits.
The purpose of this work is to study the FDTD scalar-wave
and vector-wave algorithms and to compare each with the
more conventional Yee algorithm to determine their respec-
tive computational efficiency. The major objectives of this
work are: (i) to demonstrate the mathematical and numerical
equivalence between the Yee algorithm and a FDTD vector-
wave equation, (ii) to demonstrate the mathematical and
numerical equivalence of the FDTD scalar-wave algorithm
with the Yee algorithm for the time-domain modeling of 3-D
divergence-free electromagnetic fields, (iii) to demonstrate that
a hybrid Yee/scalar-wave FDTD algorithm can be combined
with absorbing boundary conditions (ABC) to generate results
numerically identical to the conventional Yee algorithm for
coplanar microwave integrated circuits but at half the compu-
tation and one-third the computer memory, and (iv) to compare
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the numerical results generated by the hybrid Yee/scalar-wave
algorithm for the Vivaldi antenna with published experimental
work.

II. DIFFERENT TYPES OF FDTD FORMULATIONS

A. The Yee Algorithm

The Yee algorithm is a central difference approximation of
Maxwell’s curl equations written in explicit form. The relative
locations of the electric- and magnetic-field components in a
uniform, Cartesian grid is defined by the so-called Yee lattice
(Fig. 1). Typical examples of an electric- and magnetic-field
finite-difference equations for lossless media (excluding the
source term) are given by
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Fig. 1. The Yee lattice depicting the relative spacial positions of the elec-

tric and magnetic fields corresponding to a central-differencing of the Yee
algorithm as well as the FDTD vector-wave and scalar-wave algorithms.

where (m,n,p) are position indices defined such that z =
mAz,y = nAy,z = pAz
As = Az = Ay = Az (uniform space discretization)
I = time index such that ¢ = [At
At = time discretization
€ = electric permitivitty
/4 = magnetic permeability .
An important characteristic of these equations is that they are
coupled, i.e., one cannot compute any single ficld component
without having to compute other field components. Conse-
quently, six field components per cell must be stored and a
minimum of 24 additions and 6 multiplications per cell must

be performed in order to advance one time step, At, where a
“cell” is defined to be a unit volume AszAszAs.
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B. The Vector-Wave Equation

By considering the six algebraic equations of the Yee
algorithm it is apparent that there is a redundancy built into
its formulation. In particular, by considering all six difference
equations it is possible to substitute all of the magnetic-
field expressions in (1) solely in terms of electric fields and
obtain (3), which is shown at the bottom of the page where
v? = /[ex(m + 1/2,n,p)u.(m + 1/2,n,p)], and &, u,
are relative permitivity and permeability, respectively. By
performing similar manipulations on the F, and E, equations
the necessary number of difference equations per cell can be
reduced from 6 to 3. It can be readily shown that the resulting
equations are exactly equivalent to the central difference
approximation of the vector-wave equation written in explicit
form, i.e.

19

o @
Because the FDTD vector-wave equation can be derived di-
rectly from the Yee algorithm through algebraic manipulation
(analogous to performing continuous vector operations on
Maxwell’s curl equations) the results generated by both differ-
ence schemes will be numerically identical. However, despite
having eliminated the explicit computation of the magnetic
fields, (3) shows that the FDTD vector-wave formulation will
actually increase rather than decrease the minimum number
of additions required per iteration from 24 to 39 per cell.
Moreover, because values at the time index [ and [ — 1 must
be stored, the memory requirements are actually no better than
those of the Yee algorithm and at the cost of losing field
information. It can be concluded that a fully explicit FDTD
vector-wave formulation can provide little if any practical
advantage over the conventional Yee algorithm.

VzVzE + E=0.

C. The Scalar-Wave Equation

The Yee algorithm and the FDTD vector-wave algorithm,
however, can be simplified further, provided the fields are as-
sumed or known to be locally divergence-free. Mathematically,
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this is equivalent to assuming that the fields satisfy the central-
difference approximation of the divergence relation. Assuming
that Ax = Ay = Az, this relation can be expressed in terms
of the Yee lattice as

Ei<m+%)nap)_Ei(m_%)nap)
! 1 1 1
+ E, m,n+5,p -k, m,n—;,p
{ 1 l 1
+ E, m,n,p—{—; - F, m,n,p—E =0. 4

By substituting (5) into (3) expression (6), which is shown at
the bottom of the page, can be obtained.

By considering (6) as well as the analogous expressions
for the E, and E, fields, it can be shown that the resulting
difference equations are identical to the central-difference
approximation of the wave equation written in explicit form,
ie.

1 92
V2E + T

In contrast to the FDTD vector-wave equation given by (3),
(6) shows that a FDTD scalar-wave-equation formulation can
result in a modest computational savings over the Yee algo-
rithm. In particular, it can be seen that the FDTD scalar-wave
algorithm will require 21 additions and six multiplications per
cell, per iteration to generate the total electric-field transient
response as opposed to 24 addition and six multiplications
per cell, per iteration required by the Yee algorithm. If free
space is being modeled, the computational requirements of
the FDTD scalar-wave algorithm actually decrease slightly
more to just 18 additions and three multiplications per cell,
per iteration provided the time step is set equal to the Courant,
Friedrichs, Lewy (CFL) stability limit. The greatest economy,
however, of using a FDTD scalar-wave formulation will result
from the flexibility of the formulation. In particular, unlike
the Yee algorithm and the FDTD vector-wave formulation,
the FDTD scalar-wave formulation consists of six uncoupled
algebraic equations which, in turn, implies that any single
field component can be computed without necessarily having
to pay the overhead of computing other field components.
Consequently, the number of computations can be decreased
further by omitting all but the most essential or desired field
components from the formulation. Moreover, because it can
be shown that an initial-value problem based on Maxwell’s
source-free curl equations and the scalar-wave equations will
preserve the divergence-free nature of the fields at time is

E=0. 6)
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advanced (see Appendixes I and II), the FDTD scalar-wave
algorithm can be expected to generate numerical results iden-
tical to those of the Yee algorithm, provided the fields and
their initial condition are known to be divergence-free.

III. HYBRID FDTD FORMULATIONS

A. Combining the Scalar-Wave Equation with the
Vector-Wave Equation

Though there can be significant computational advantage, it
is important to emphasize the fact that the FDTD scalar-wave
algorithm will be valid if and only if the fields are known
to be divergence-free for all time, and this imposes a limit
on its usage and generality that would normally not apply
to the Yee algorithm of the FDTD vector-wave algorithm.
Consequently, one must be careful to determine whether the
scalar-wave equation is applicable in a given situation. One
simply way, however, to extend the applicability of the FDTD
scalar-wave formulation is to combine it with the FDTD
vector-wave algorithm. By applying the FDTD vector-wave
algorithm locally to the nondivergence free regions of the
problem domain such as pec edges, dielectric interfaces, and/or
sources, and applying the more economical FDTD scalar-wave
algorithm to the remaining divergence-free regions,. i.e., those
regions that have no discontinuities, the two algorithms can
be combined to generate the time-domain response of any
isotropic, inhomogeneous scattering problem.

To demonstrate the feasibility of this hybrid formulation,
we consider modeling the time-domain response of a time-
harmonic electric-field source radiating inside a 75As X
75As X T5As isotropic, homogeneous pec/air cavity using a
uniform, cubic mesh. For computational efficiency the time
step was set equal to the well-known CFL stability limit.
The source was chosen to be a single F, field with a time-
harmonic dependence located near the center of the cavity. The
problem domain was partitioned into two regions (Fig. 1). In
region 1 a FDTD (electric field) vector-wave algorithm was
applied to model the nondivergence-free fields around the
source. Region 2 consisted of the remaining divergence-free
volume where a FDTD (electric field) scalar-wave algorithm
was used. The resulting electric-field distributions were then
compared with those of the conventional Yee algorithm. It was
found that the hybrid algorithm ran approximately 1.37 times
faster than the conventional Yee algorithm (730 compared
to 1000 CPU seconds) for comparably vectorized computer
programs on the Cray-YMP. Moreover, it was found that
both algorithms generated numerical results identical to within
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nine decimal places over the entire problem domain even
after 10000 iterations, demonstrating not only equivalence but
stability of the algorithm.

B. Combining the Scalar-Wave Equation with the Yee
Algorithm

Having verified the numerical equivalence between the
FDTD scalar-wave/vector-wave hybrid formulations with the
conventional Yee algorithm, we note that the computational
efficiency could have been increased even further by par-
titioning the problem domain so that the divergence-free
regions can be interfaced with the nondivergence free regions
without having to use all three electric- (or all magnetic-)
field components to interface region 1 with region 2. Though
more claborate partitioning schemes are possible, a simple
and easily vectorizable scheme that can be used to reduce
the number of field components is to partition the problem
into planar volumes, which makes the present hybrid approach
very attractive in modeling planar and/or coplanar microwave
integrated circuits. Since the interface between each region
is 2-D in nature, only the tangential electric (or tangential
magnetic) field on that interface are needed to model the fields
in each divergence-free region. Consequently, only two out of
the three electric (or magnetic) FDTD scalar-wave equations
in a Cartesian system are needed to model the divergence-
free regions, reducing the memory requirements of the FDTD
scalar-wave algorithm from six fields per cell to four fields
per cell and, more significantly, the number of computations
per iteration from 24 additions, six multiplications to just 14
additions, four multiplications per cell assuming a uniform
cubic mesh is used. For the special case of modeling free
space, the number of additions needed to implement the FDTD
scalar-wave formulation can be reduced even further to just
12 additions, two multiplications by choosing the time step to
be near the stability limit. Table I summarized and compares
all of the computational and memory requirements of the Yee
algorithm, the FDTD vector-wave and scalar-wave algorithms.

To demonstrate the economy of using the hybrid Yee/scalar-
wave formulation with planar partitioning as well as its
equivalence to the standard Yee algorithm, a coplanar strip
(CPS) transmission line inside a 75As x 7T5As x T5As pec
cavity partitioned into three planar volumes was simulated
using a time-harmonic electric-field source (Fig. 2). Region 2
was chosen to be a planar volume approximately two cells
thick encompass the CPS line on thin dielectric substrate
(er = 5.0). Regions 1 and 3 were chosen to consist of
the remaining divergence-free volumes. A FDTD scalar-wave
algorithm was applied to F,, E, in regions 1 and 3 while
the conventional Yee algorithm was applied in region 2. Both
simulations were run at the maximum time step allowed for
by the CFL stability condition using a uniform, cubic mesh.
After 10000 iterations, it was found that the £, and E, field
distributions over the entire volume were identical to that
obtained using a full Yee algorithm up to 10 decimal places on
the Cray YMP. Moreover, the computation time of the hybrid
formulation was found to be approximately 1.54 times faster
than the Yee algorithm for comparably vectorized codes, i.e.,
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Fig. 2. Partitioning of a hybrid FDTD algorithm used to model the
time-domain response of a 25As X 25As X 25As pec cavity using a uniform,
cubic grid. The FDTD (electric field) vector-wave was applied around a
time-harmonic electric-field source located near the center of the cavity, i.c.,
region 1, while the FDTD (electric field) scalar-wave algorithm was applied
to region 2.

TABLE I
COMPARISON OF THE MINIMUM COMPUTATION PER ITERATION AND MEMORY
CoSTS OF THE VARIOUS 3-D FDTD TECHNIQUES THE * INDICATES THE
COSTS ASSOCIATED WITH THE FREE-SPACE SIMULATIONS
OPERATED AT THE CFL STABILITY LIMIT

method add/cell multiJcell | memory/cell
Yee algorithm 24 6 6
FDTD vector-wave 36 6 6
Graatomimy | 209" | 60" 6
FDTD scalar-wave 14312* | 4" 4
2 field formulation)

648 seconds compared to 1000 seconds. We note that because
the Yee algorithm can be vectorized extremely efficiently when
pec walls are used, as opposed to an absorbing boundary wall,
the improvement in computer time falls somewhat short of the
theoretical limit of 2.14 implied by Table I.

C. Application of an Absorbing Boundary Condition

Unlike the previous examples, many transient electromag-
netics problems require the application of an absorbing bound-
ary condition (ABC). Typically, when using the Yee algorithm
in a Cartesian system, the ABC is applied directly to the
two field components tangential to the ABC wall. Indeed,
strictly speaking, many of the ABC’s are valid only when
applied in this manner. If a FDTD scalar-wave formulation is
used, however, this straightforward application of the ABC is
not always possible. If, as in the previous example, a FDTD
scalar-wave algorithm is applied using only the E, and E,
components, there will be difficulties in applying an ABC
to an zy- and zz-plane because only one tangential field
component rather than two will be available for computation.
This leads to a very novel predicament. In particular, though
the ABC can be applied to the known tangential component
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independently of the unknown tangential component (in a
Cartesian system), there is sufficient information to compute
the normal field components interior to the ABC wall without
the other tangential component. One way to remedy this is to
apply an ABC in some fashion to the normal field component.
Though there are several possible ways to accomplish this, an
approach mathematically identical to the conventional finite-
difference application of the ABC is to apply the ABC to
the normal derivative of the normal field. To illustrate this
equivalence, consider the conventional application of the first-
order Engquist-Majda ABC to the tangential electric field

components relative to a yz plane located at x = mAx
[5], ie.
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By applying the ABC separately to adjacent field components
and superimposing the equations, it can be shown that
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If the fields at the absorbing boundary are divergence-free, i.e.,
the fields satisfy (5), G ., will be mathematically equivalent to
the central-difference approx1mat10n of the normal derivative
of the normal field, i.c.

Gy (m,n,p) = Gy (m,n,p) 11
where
! ! 1 1 1
G.(m,n,p) = E, m+—2—,n,p -E, m==,mp).
(12)

By computing G, on the ABC wall the interior normal fields
can be computed at a future time step using the FDTD
vector-wave equation. Because of the mathematical equiva-
lence between the Yee algorithm and the FDTD vector-wave
equation, application of the first-order Engquist- Ma]da ABC
to the normal field information (in the form of GL) with the
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FDTD vector-wave algorithm will be numerically equivalent
to the ABC applied to the tangential field components with
the Yee algorithm.

To verify the equivalence between the conventional ap-
plication of the ABC with the proposed reformulation, the
time-domain simulation of the coplanar strip transmission
line (see Fig. 3) was repeated using the first-order Engquist-
Majda ABC with the hybrid Yee/scalar-wave algorithm using a
time-harmonic electric-field source. The G}, ABC formulation
was applied with the FDTD scalar-wave algorithm in the
divergence-free regions whereas the conventional tangential
field ABC formulation was applied with the Yee algorithm
in the nondivergence-free regions. After 10000 iterations it
was found that the E, and F, values generated by the hybrid
algorithm over the entire volume are identical up to nine
decimal places to those obtained using the full Yee algorithm
with the conventional application of the ABC. Moreover,
the computational savings of the hybrid algorithm was still
found to be almost 2.1 times faster than the Yee algorithm
(756 compared to 1593 CPU seconds) for comparably vector-
ized code.

Though we have considered the first-order Engquist-Majda
ABC, similar analysis can also be used to show that the
second-order Engquist-Majda ABC as well as the Liao ABC
(or any order) [6] can also be equivalently reformulated.

IV. COMPUTATION OF THE E-PLANE RADIATION
PATTERN OF THE VIVALDI ANTENNA USING
THE YEE/SCALAR-WAVE ALGORITHM

As a practical demonstration of the Yee/scalar-wave algo-
rithm, the far field F-plane free space radiation patterns of a
Vivaldi antenna with and without dielectric substrate (Fig. 4) is
computed and compared with published experimental results.
Numerical simulations were run using a transient (gaussian)
electric-dipole source located at the back of the antenna. The
far-field was then computed using the equivalence principle in
conjunction with the near- to far-field time-domain translation
algorithm outlined in [7] and [8]. These time-domain results
were then Fourier-transformed to obtain the frequency depen-
dence of the radiation patterns. For computational efficiency,
the far-field was computed using the smallest equivalence
surface required to enclose the antenna. Interestingly, we
note that in addition to computational efficiency, choosing the
smallest equivalence surface will also increase the accuracy
of the far-field computation by reducing the numerical-phase
error introduced into the equivalent sources by the application
of the finite-difference approximation.

We begin by comparing the numerical results generated by
the hybrid Yee/scalar-wave algorithm with the experimental
results for a Vivaldi without a dielectric substrate at a single
operatmg frequency, fo. The finite-difference discretization
was chosen such that A\ = 20As, where Aq = free-space
wavelength corresponding to fo and As = Az = Ay = Az =
cell size. The geometry of the Vivaldi was modeled using a
stair-casing approximation and longitudinal (pec) symmetry
abut the geometry was used to reduce the problem domain by
one-half. Information regarding the specific dimensions of the
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Fig. 3. Partitioning of a hybrid FDTD algorithm used to model the

time-domain response of a coplanar strip (CPS) transmission line on a
thin dielectric ‘substrate (¢1, = 1.00,e2, = 5.00,e3, = 1.00) inside a
25A8 X 25As X 25A s uniform, cubic grid. The Yee algorithm was applied to
a planar volume around the CPS line, i.e., region 2, while the FDTD (E,, E.)
scalar-wave algorithm was applied to regions 1 and 3.

,line of
/ symmetry

/
dipole feed /,/ "back end”

"front end”

Fig. 4. The Vivaldi Antenna.

Vivaldi are given in Table II. In an attempt to economically
reduce unwanted interactions with the antenna, the ABC
walls were placed approximately 0.5Xg,1.0Ag,1.25)¢, and
1.5A0 from the back, front, top/bottom, and side of the
Vivaldi, respectively. This resulted in a 50As x 14TAs x
157As problem domain divided into three planar regions:
a small nondivergence-free region surrounding the Vivaldi
(20As x 147As x 157As) and two remaining divergence-
free regions (both 24As X 147As X 157As). The conventional
Yee algorithm was used to compute the transient response.of
the nondivergence-free region while a (E,, E,) FDTD scalar-
wave algorithm was used to compute the transient response
of the divergence-free region (Fig. 5). Total computation time
of the hybrid algorithm was approximately 4 CPU minutes
for 1200 iterations on the Cray YMP. Fig. 6 compares the
results generated by the Yee/scalar-wave algorithm with the
experimental results published in [9]. The results are found to
be in good agreement. B .

We next consider modeling a Vivaldi with dielectric sub-
strate (e, = 2.22) using the same Yee/scalar wave formulation.
The new dimensions of the Vivaldi being modeled are given
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Fig. 5. Partitioning of the hybrid Yee/scalar-wave algorithm used to model
the time-domain response of a Vivaldi antenna in free space. A pec zz-wall
(y = 0) is along the longitudinal axis of the Vivaldi splitting the structure
in half. The Yee algorithm was applied to a thin planar volume around the
antenna, i.e., region 2, while the FDTD (E,, E. ) scalar-wave algorithm was
applied to regions 1 and 3.
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Fig. 6. Comparison of the hybrid Yee/scalar-wave algorithm results with
published experimental data [9] for a Vivaldi antenna with no dielectric
substrate.

TABLE 11
PHYSICAL DIMENSIONS OF THE VIVALD! WITHOUT DIELECTRIC SUBSTRATE
(e+ = 1.00) UseEp 10 CoMPARE HYBRID YEE/SCALAR-WAVE
ALGORITHM (As = Az = Ay = Az) SIMULATIONS
wiTH EXPERIMENT [9] (fo = 10.0 GHz,

Ao = 30 mm = 20As)
geometric " dimensions [9] | finite-difference
characteristic approximation
L 6.30A0 126As
Wrnax/2 177h0 _ 19As
Wo2 5.1000 103As
Wmin/2. 0.01A0 1As

in Table III. In contrast to the previous case, it was found
that a finer discretization, i.e., A9 = 34As, was needed
to adequately model the dielectric thickness, the associated
decrease in wavelength as well as the more dramatic flaring
of the antenna. To accommodate this discretization and to
allow for an ABC wall placement reasonable. far away from
the antenna, a problem domain 50As x 86As x 263As was
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Fig. 7. Comparison of the hybrid Yee/scalar-wave algorithm results with
published experimental data [10] for a Vivaldi antenna with dielectric substrate
(er = 2.22).

TABLE III
PHYSICAL DIMENSIONS OF THE VIVALDI WITH DIELECTRIC SUBSTRATE
(er = 2.22) Usep To COMPARE HYBRID YEE/SCALAR-WAVE
ALGORITHM (As = Az = Ay = Az) SIMULATIONS
witH EXPERIMENT [10] (fo = 35.0 GHz,
Ao = 8.5mm = 34As)

geometric dimensions [10] | finite-difference
characteristic approximation
d 0.058M0 2As
L 0.677M0 232As
Wmax/2 0.315M) 53As
W2 0.31510 (approx.) 53As
Wmin/2 0.010A0 (approx.) 1As

used in the numerical simulations. (We note, however, due to
memory limitations, the ABC walls are approximately 20%
closer relative to wavelength than the previous case.) As
before, longitudinal symmetry was used to reduce memory and
computation by one-half. Fig. 7 compares the E-plane pattern
generated by the Yee/scalar wave algorithm with the measured
results published in [10]. The total computation time of the
hybrid algorithm was approximately 3.4 CPU minutes on the
Cray YMP for 1000 iterations. It can be seen that the two
results are in good agreement. It is believed that discrepancies
are due to ABC wall placement and the fact that a rectangular-
waveguide feed rather than a dipole feed was used in the
measurement.

V. COMMENTS ON THE EFFICIENCY OF THE
YEE/SCALAR-WAVE ALGORITHM

Although partitioning the problem into planar regions is
always possible, an important factor in determining how much
computation time and memory will be saved by a hybrid-
FDTD formulation is the relative volume of the divergence-
free region compared to that of the nondivergence-free region.
To minimize the computation and memory, the volume of the
nondivergence-free regions should be made as small as pos-
sible to maximize the use of the more economical scalar-wave
formulation. Suitable geometries include planar geometries in
which nondivergence-free regions are often localized to thin
planar volumes. In such cases, a hybrid Yee algorithm/scalar-
wave algorithm can be expected to result in a memory and
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computational savings approximately equivalent to that of a
FDTD scalar-wave algorithm (based on two components) over
the entire domain.

Because a significant reduction in computation and memory
is created by omitting the computation of fields, a potential
drawback of using the proposed hybrid scheme is the in-
evitable loss of electric- or magnetic-field information. This
drawback is somewhat offset by the fact that total field
information, e.g., to compute the electric or magnetic current,
is often required at or around the nondivergence-free regions
such as pec, pmc, or dielectric surfaces where the Yee algo-
rithm must be applied anyway as part of the hybrid scheme.
However, if information about all six field components is
needed in the divergence-free regions, e.g., to compute the
power crossing a plane, the Yee algorithm can be applied
locally where needed with minimal computational overhead.

VI. CONCLUSIONS

A hybrid Yee algorithm/scalar-wave equation formulation
that is mathematically and numerically equivalent to the con-
ventional Yee algorithm has been proposed. Limitations on
its application as well as the applicability of the absorbing
boundary conditions were also discussed. It is found that this
hybrid approach is a viable way to reduce the memory by 33%
and the computation by approximately 50% over the standard
Yee algorithm. In addition, a method of applying the absorbing
boundary condition on the normal fields (relative to an ABC
wall) using the divergence relation in conjunction with the
vector-wave equation is investigated and found to yield results
numerically identical with the conventional application of the
ABC based on the tangential fields. Numerical results gener-
ated by the hybrid Yee/scalar-wave algorithm for the Vivaldi
antenna are given and compared with published experimen-
tal work.

APPENDIX A
We wish to show that a solution to the initial value problem
of the wave equation, i.e.

2
2o
where ¢ = constant, will preserve the divergence relation,
V-E(F,t)=0fort >t if V- E(F,t =1t9) = 0.

Proof: Taking the divergence of the wave equation, we
obtain

V2E(7,t) E(Ft) =0

1 9?
2o
where ¢(7,t) = V - E(7,1).

If the fields are divergence-free at some arbitrary point in
time, %o, i.c.,

V2p(7,t) — (F,t) =0 Al

V-E(fFt=1t)=0 (A2)

it can be concluded by inspection that the solution to (A.1)
is given by

&7, t) =V -EFt)=0 fort>tg.
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Note: A similar proof involving the finite-difference approxi-
mation of the wave equation can be done using the finite-
difference analog of the continuous-vector operations.

APPENDIX B

We want to prove that the Maxwell’s curl equations (source-
free) given by

. OH(Ft)
VXE(T’,t)——NT
G iy 0D

will preserve the divergence-free nature of the electric and
magnetic field for ¢ > #g.

Proof: Taking the divergence of both equations, one
obtains the following equations

a(]ﬁh(f, t) .
% =0 (B.1)
0pe(F,t)
— =0 (B.2)

where ¢, (7,t) = V - H(7,t) and ¢.(7,t) = V - E(7,t).
If the fields are divergence-free at an arbitrary point in time,
to, ie. )

Sn(Ft =1t0) =V - -H(F,t =to)

=0 (B.3)
Ge(Fit =10) =V - E(F,t =tg) =0

(B.4)

it can be concluded by inspection that the solution to (B.2)
and (B.4) implies that

V-H(r,t)=V -E(Ft)=0 fort>t.

Note: A similar proof for the Yee algorithm can be done using
the finite-difference analog of the vector operations.
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